skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Swann, Abigail_L S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Terrestrial, aquatic, and marine ecosystems regulate climate at local to global scales through exchanges of energy and matter with the atmosphere and assist with climate change mitigation through nature‐based climate solutions. Climate science is no longer a study of the physics of the atmosphere and oceans, but also the ecology of the biosphere. This is the promise of Earth system science: to transcend academic disciplines to enable study of the interacting physics, chemistry, and biology of the planet. However, long‐standing tension in protecting, restoring, and managing forest ecosystems to purposely improve climate evidences the difficulties of interdisciplinary science. For four centuries, forest management for climate betterment was argued, legislated, and ultimately dismissed, when nineteenth century atmospheric scientists narrowly defined climate science to the exclusion of ecology. Today's Earth system science, with its roots in global models of climate, unfolds in similar ways to the past. With Earth system models, geoscientists are again defining the ecology of the Earth system. Here we reframe Earth system science so that the biosphere and its ecology are equally integrated with the fluid Earth to enable Earth system prediction for planetary stewardship. Central to this is the need to overcome an intellectual heritage to the models that elevates geoscience and marginalizes ecology and local land knowledge. The call for kilometer‐scale atmospheric and ocean models, without concomitant scientific and computational investment in the land and biosphere, perpetuates the geophysical view of Earth and will not fully provide the comprehensive actionable information needed for a changing climate. 
    more » « less
  2. Abstract. Large-scale reforestation, afforestation, and forest restoration schemes have gained global support as climate change mitigation strategies due to their significant carbon dioxide removal (CDR) potential. However, there has been limited research into the unintended consequences of forestation from a biophysical perspective. In the Community Earth System Model version 2 (CESM2), we apply a global forestation scenario, within a Paris Agreement-compatible warming scenario, to investigate the land surface and hydroclimate response. Compared to a control scenario where land use is fixed to present-day levels, the forestation scenario is up to 2 °C cooler at low latitudes by 2100, driven by a 10 % increase in evaporative cooling in forested areas. However, afforested areas where grassland or shrubland are replaced lead to a doubling of plant water demand in some tropical regions, causing significant decreases in soil moisture (∼ 5 % globally, 5 %–10 % regionally) and water availability (∼ 10 % globally, 10 %–15 % regionally) in regions with increased forest cover. While there are some increases in low cloud and seasonal precipitation over the expanded tropical forests, with enhanced negative cloud radiative forcing, the impacts on large-scale precipitation and atmospheric circulation are limited. This contrasts with the precipitation response to simulated large-scale deforestation found in previous studies. The forestation scenario demonstrates local cooling benefits without major disruption to global hydrodynamics beyond those already projected to result from climate change, in addition to the cooling associated with CDR. However, the water demands of extensive forestation, especially afforestation, have implications for its viability, given the uncertainty in future precipitation changes. 
    more » « less
  3. Abstract Climate change is triggering regional-scale alterations in vegetation including land cover change such as forest die-off. At sufficient magnitudes, land cover change from forest die-off in one region can change not only local climate but also vegetation including agriculture elsewhere via changes in larger scale climate patterns, termed an ‘ecoclimate teleconnection’. Ecoclimate teleconnections can therefore have impacts on vegetative growth in distant regions, but the degrees to which the impact decays with distance or directionally diffuses relative to the initial perturbation are general properties that have not been evaluated. We used the Community Earth system model to study this, examining the implications of tree die-off in 14 major US forested regions. For each case we evaluated the ecological impact across North America as a function of distance and direction from the location of regional tree die-off. We found that the effects on gross primary productivity (GPP) generally decayed linearly with distance, with notable exceptions. Distance from the region of tree die-off alone explained up to ∼30% of the variance in many regions. We also found that the GPP impact was not uniform across directions and that including an additional term to account for direction to regional land cover change from tree die-off was statistically significant for nearly all regions and explained up to ∼40% of the variance in many regions, comparable in magnitude to the influence of El Nino on GPP in the Western US. Our results provide novel insights into the generality of distance decay and directional diffusion of ecoclimate teleconnections, and suggest that it may be hard to identify expected impacts of tree die-off without case-specific simulations. Such patterns of distance decay, directional diffusion, and their exceptions are relevant for cross-regional policy that links forests and other agriculture (e.g. US Department of Agriculture). 
    more » « less